Coloring the normalized Laplacian for oriented hypergraphs

نویسندگان

چکیده

The independence number, coloring number and related parameters are investigated in the setting of oriented hypergraphs using spectrum normalized Laplace operator. For both an inertia--like bound a ratio--like shown. A Sandwich Theorem involving clique vector chromatic is proved, as well lower for terms smallest largest eigenvalue Laplacian. In addition, spectral partition numbers studied relation to number.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online coloring of hypergraphs

We give a tight bound on randomized online coloring of hypergraphs. The bound holds even if the algorithm knows the hypergraph in advance (but not the ordering in which it is presented). More specifically, we show that for any n and k, there is a 2colorable k-uniform hypergraph on n vertices for which any randomized online coloring uses Ω(n/k) colors in expectation. 1 Online Hypergraph Coloring...

متن کامل

Directed domination in oriented hypergraphs

ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been g...

متن کامل

Constructing cospectral graphs for the normalized Laplacian

We give a method to construct cospectral graphs for the normalized Laplacian by swapping edges between vertices in some special graphs. We also give a method to construct an arbitrarily large family of (non-bipartite) graphs which are mutually cospectral for the normalized Laplacian matrix of a graph. AMS 2010 subject classification: 05C50

متن کامل

Coloring simple hypergraphs

Fix an integer k ≥ 3. A k-uniform hypergraph is simple if every two edges share at most one vertex. We prove that there is a constant c depending only on k such that every simple k-uniform hypergraph H with maximum degree ∆ has chromatic number satisfying χ(H) < c ( ∆ log ∆ ) 1 k−1 . This implies a classical result of Ajtai-Komlós-Pintz-Spencer-Szemerédi and its strengthening due to Duke-Lefman...

متن کامل

Coloring H-free hypergraphs

Fix r ≥ 2 and a collection of r-uniform hypergraphs H. What is the minimum number of edges in an H-free r-uniform hypergraph with chromatic number greater than k? We investigate this question for various H. Our results include the following: • An (r, l)-system is an r-uniform hypergraph with every two edges sharing at most l vertices. For k sufficiently large, there is an (r, l)-system with chr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2021

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2021.07.018